Math At-Home Practice

2nd Grade

*The following can be completed by students to review and practice at home.
Use your centimeter ruler. Measure each horizontal line segment below by marking and counting 1-cm lengths.

1. ______________________ cm

2. ______________________ cm

3. ______________________ cm

4. Draw a line segment 8 cm long. Mark and count 1-cm lengths to check the length.

Measure each vertical line segment below by marking and counting 1-cm lengths.

5. ______________________ cm

6. ______________________ cm

7. ______________________ cm
Remembering

Make a ten to find the total.

1. \(4 + 7 = \)
 \(4 + 8 = \)
 \(9 + 5 = \)

2. \(8 + 5 = \)
 \(7 + 9 = \)
 \(6 + 7 = \)

Draw lines to make pairs.
Write odd or even.

3.

4.

Add.

5. \(30 + 60 = \)
 \(50 + 20 = \)
 \(10 + 90 = \)

 \(3 + 6 = \)
 \(5 + 2 = \)
 \(1 + 9 = \)

6. **Stretch Your Thinking** Ryan measures the length of his pen. He places the end of the pen at the 1-inch mark of a ruler. Tell why the measurement will be wrong.
Look for shapes in your home and neighborhood.

1. List or draw objects that show squares.

2. List or draw objects that show rectangles.

3. List or draw objects that show triangles.

4. List or draw objects that show pentagons.

5. List or draw objects that show hexagons.
Find the unknown addend (unknown partner).

1. 4 + □ = 12
 8 + □ = 15
 14 - □ = 9

2. 6 + □ = 12
 5 + □ = 11
 13 - □ = 7

Find the total or partner.

3. 7
 +4
 = 11
 6
 +8
 = 14
 9
 +4
 = 13
 16
 -8
 = 8
 12
 -3
 = 9
 17
 -9

What numbers are shown?

4.

 □□ ○○○
 □□ □□□

 □□ ○○○
 □□ □□□

 ___ H ___ T ___ O
 ___ H ___ T ___ O

 ___ = ___ + ___ + ___
 ___ = ___ + ___ + ___

5.

 □□□□ ○○○○○
 □□□□ □□□□

 □□□□ ○○○○○
 □□□□ □□□□

 ___ H ___ T ___ O
 ___ H ___ T ___ O

 ___ = ___ + ___ + ___
 ___ = ___ + ___ + ___

6. Stretch Your Thinking Ian has 2 long straws and 2 short straws. How can he use all of the straws to make a triangle?

Use a centimeter ruler. Find the distance around each shape.

1.

\[\text{cm} + \text{cm} + \text{cm} + \text{cm} = \text{cm} \]

2.

\[\text{cm} + \text{cm} + \text{cm} + \text{cm} = \text{cm} \]

Estimate and then measure each side. Then find the distance around the rectangle.

3. a. Complete the table. Use a centimeter ruler to measure.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the rectangle.

\[\text{cm} + \text{cm} + \text{cm} + \text{cm} = \text{cm} \]
Write the unknown addend (unknown partner).

1. \(5 + \square = 13\) \hspace{1cm} 4. \(\square + 12\) \hspace{1cm} 13 - \(\square = 7\)

2. \(8 + \square = 14\) \hspace{1cm} \(\square + 17\) \hspace{1cm} 16 - \(\square = 7\)

Solve. Make a proof drawing.

3. Coach Walker gets a shipment of 153 uniforms. He puts them in boxes of 10. How many boxes can he fill? How many uniforms will be left over?

 \(\square\) boxes \hspace{1cm} \(\square\) uniforms left over

4. Draw a line segment 7 cm long. Mark and count 1-cm lengths to check the length.

5. **Stretch Your Thinking** Alex has a small notebook that is shaped like a rectangle. She knows one side is 6 cm and another side is 4 cm. Explain how to find the distance around the notebook without using a ruler.
Estimate and measure each side. Then find the distance around the triangle.

1. a. Complete the table.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the triangle.

____ cm + ____ cm + ____ cm = ____ cm

2. a. Complete the table.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the triangle.

____ cm + ____ cm + ____ cm = ____ cm

3. a. Complete the table.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LJ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the triangle.

____ cm + ____ cm + ____ cm = ____ cm
Find the total or partner.

1. \[8 + 5 \quad 4 + 7 \quad 6 + 6 \quad 14 - 5 \quad 13 - 7 \quad 16 - 9 \]

Make a drawing for each number. Write <, >, or =.

2. 131 \[\bigcirc\] 122

3. 27 \[\bigcirc\] 35

4. List or draw objects that show rectangles.

5. **Stretch Your Thinking** Draw and label two different triangles. Each shape should have a distance around it of 12 cm.
Name the shapes using the words in the box.

cube quadrilateral pentagon hexagon

1. ______________ 2. ______________

3. ______________ 4. ______________

5. ______________ 6. ______________

7. ______________ 8. ______________
Make a drawing. Write an equation. Solve the problem.

1. Tanya bakes 12 muffins. She sells 9 of them at the bake sale. How many muffins does she have now?

Show your work.

Add.

2. 53

3. 87

4. 36

+ 28

+ 45

+ 79

Estimate and then measure each side. Then find the distance around the rectangle.

5. a. Complete the table. Use a centimeter ruler to measure.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the rectangle.

____ cm + ____ cm + ____ cm + ____ cm = ____ cm

6. Stretch Your Thinking Write all the names you can think of that could describe a four-sided shape.
Complete the table. Estimate the height of six people, pets, or objects. Find the actual heights. Choose the nearest centimeter endpoint. Then, measure the difference between your estimate and the actual measurement.

<table>
<thead>
<tr>
<th>Person, Pet, or Object</th>
<th>Estimated Height (cm)</th>
<th>Actual Height (cm)</th>
<th>Difference Between Estimated and Actual Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Remembering

Make a drawing. Write an equation. Solve the problem. Show your work.

1. Chase has some music CDs. 9 of them are rock music. The other 8 are pop music. How many CDs does Chase have?

 label

Add. Use any method.

2. 68

 + 35

 103

3. 52

 + 79

 131

4. 84

 + 86

 170

Estimate and then measure each side. Then find the distance around the triangle.

5. a. Complete the table.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the triangle.

 ____ cm + ____ cm + ____ cm = ____ cm

6. Stretch Your Thinking Find two items in the classroom whose lengths you estimate to have a difference of 3 cm. Then measure each item.

 Item 1 Estimate: ____ cm Measure: ____ cm

 Item 2 Estimate: ____ cm Measure: ____ cm

 Difference between Item 1 and Item 2: ____ cm
Homework

1. Find five objects at home to measure in inches. Choose objects that are less than 1 yard (36 in.) long. Estimate and measure the length of each object. Measure to the nearest inch. Complete the table.

<table>
<thead>
<tr>
<th>Object</th>
<th>Estimated Length (in.)</th>
<th>Measured Length (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Plot the data from the last column in Exercise 1 on the line plot.

```
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
```

Length of Objects (inches)

3. Find five objects at home to measure in feet or yards. Complete the table. Remember to include units with your measurements.

<table>
<thead>
<tr>
<th>Object</th>
<th>Estimated Length</th>
<th>Measured Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT 3 LESSON 7

Estimate and Measure with Inches 85
Remembering

Make a matching drawing or draw comparison bars. Solve the problem.

1. Erin has 6 grapes. Cody has 8 more grapes than Erin. How many grapes does Cody have?

2. Under the coins, write the total amount of money so far. Then write the total using $.

2. 10¢ 10¢ 5¢ 5¢ 1¢ 1¢

$ ___ ___ ___ ___ ___ ___ ___ ___ ___ total

Label the shapes using the words in the box.

cube quadrilateral pentagon hexagon

3. 4.

5. Stretch Your Thinking Explain why we use rulers instead of hands or fingers to measure things.
1. Measure each line segment.

 - ______ in.
 - ______ in.
 - ______ in.
 - ______ in.

2. Show the data from Exercise 1 on this line plot.

3. Ring more or less.

 The number of inches will be more less than the number of centimeters.
Solve the problem.

1. Mya has a stack of 15 cups. There are 7 short cups and some tall cups in the stack. She uses 3 tall cups. How many tall cups are in the stack now?

Add.

2. 74
 + 15

3. 47
 + 26

4. 58
 + 34

5. Find two objects to measure in inches. Estimate and measure the length of each object. Measure to the nearest inch. Complete the table.

<table>
<thead>
<tr>
<th>Object</th>
<th>Estimated length (in.)</th>
<th>Measured length (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. **Stretch Your Thinking** Juan and Brooke each measured the length of the same paper clip correctly. Juan says the paper clip is about 5. Brooke says it is about 2. Explain how they can both be correct.
Color the quilt pattern. Use the table below.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>triangle</td>
<td>green</td>
</tr>
<tr>
<td>quadrilateral</td>
<td>red</td>
</tr>
<tr>
<td>pentagon</td>
<td>purple</td>
</tr>
<tr>
<td>hexagon</td>
<td>yellow</td>
</tr>
</tbody>
</table>
Remembering

Make a drawing. Write an equation. Solve the problem.

1. Evan has 4 markers. That is 7 fewer markers than Jenna has. How many markers does Jenna have?

2. \(14 + 22 + 57 = \)

3. \(36 + 18 + 24 = \)

4. Show the data from the table on the line plot.

<table>
<thead>
<tr>
<th>Length of Pencils (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inches</td>
</tr>
<tr>
<td>2 inches</td>
</tr>
<tr>
<td>4 inches</td>
</tr>
<tr>
<td>3 inches</td>
</tr>
<tr>
<td>5 inches</td>
</tr>
</tbody>
</table>

5. **Stretch Your Thinking** Show an example of how you could put two triangles together to make a larger triangle. Show an example of how you can put two triangles together to make a quadrilateral.
Draw coins to show 6 different ways to make 25¢ with pennies, nickels, and dimes.

<table>
<thead>
<tr>
<th></th>
<th>25¢</th>
<th></th>
<th>25¢</th>
<th></th>
<th>25¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write how to count the money.

7.

8.

1. Write two equations for each Math Mountain.

```
    □
  /   \ 
□     □
□   4
7
```

```
   □
  /  \
□   □
□  9
15
```

```
   □
  /  \
□   □
□  8
13
```

Add:
2. \(40 + 60 = \) __ \(50 + 30 = \) __ \(10 + 40 = \) __
 \(4 + 6 = \) __ \(5 + 3 = \) __ \(1 + 4 = \) __

3. Draw a line segment 6 cm long.
 Mark and count 1-cm lengths to check the length.

4. **Stretch Your Thinking** Elliot counts a group of coins starting with the quarters. His sister counts the same coins. She starts counting the pennies. Will they get the same amount? Explain.
Under each picture, write the total amount of money so far. Then write the total using $.

1. 25¢ 25¢ 10¢ 1¢

 $_______
 total

2. 100¢ 5¢

 $_______
 total

3. Hope has 1 dollar, 1 quarter, 5 dimes, 3 nickels, and 2 pennies. Draw 100 s, 25 s, 10 s, 5 s, and 1 s.

 Write the total amount of money.
 $_______
 total
1. Complete the Math Mountains and equations.

\[
\begin{array}{c}
7 + 8 = \boxed{} \\
7 + \boxed{} = 15 \\
15 - 7 = \boxed{}
\end{array}
\]

Solve. Make a proof drawing.

2. Susan wins 78 tickets. She needs 10 tickets for each prize. How many prizes can she get? How many tickets will she have left over?

\[\boxed{\text{prizes}, \boxed{\text{tickets left over}}}\]

3. Write how to count the money.

4. Stretch Your Thinking Maria has $1.35. She has only quarters and nickels. Draw two possible groups of coins Maria could have. Use 25¢s to show quarters and 5¢s to show nickels.
Homework

Solve the word problems. Rewrite the 100 or make a drawing. Add to check your answer.

100 = \[\underline{90} + \underline{10} \]

Tens
Ones

1. There were 100 rubber ducks in the store. The shopkeeper sold 19 of them. How many ducks are in the store now?

\[\underline{81} \]

label

2. Ben bought 100 napkins for the picnic. There are 26 napkins left after the picnic. How many napkins were used?

\[\underline{74} \]

label

Find the unknown addend. Check by adding.

3. \[\underline{100} \]

\[\underline{85} \]

\[\underline{67} \]

\[\underline{58} \]

\[\underline{23} \]
Add or subtract.

1. \(\begin{array}{ccccccc} 7 & 8 & 12 & 14 & 7 & 17 \\ +9 & +5 & -6 & -6 & +4 & -9 \end{array} \)

What number is shown?
\(H = \text{Hundreds}, \ T = \text{Tens}, \ O = \text{Ones} \)

2. \(\begin{array}{ccc} \hline \hline \hline \end{array} \text{ o o o } \end{array} \)

3. \(\begin{array}{ccc} \hline \hline \hline \end{array} \text{ o o o o o o } \end{array} \)

\(\hline \) \(H \) \(\hline \) \(T \) \(\hline \) \(O \)

\(\hline \) \(= \) \(\hline \) \(+ \) \(\hline \) \(+ \) \(\hline \) \(+ \)

Under each picture, write the total amount of money so far. Then write the total using $.

4. \(\begin{array}{ccc} 100 & \text{¢} & 5 & \text{¢} & 1 & \text{¢} \end{array} \)

\(\begin{array}{ccc} \text{The United States of America} & \text{Washington} & \text{Lincoln} \end{array} \)

\(\hline \) \(\hline \) \(\hline \) \(\hline \) \(\hline \) \(\hline \)

\(\text{total} \) \($ \) \(\hline \)

5. **Stretch Your Thinking** Ed knows this answer is wrong right away. How could he know this?

\(\begin{array}{c} 100 \\ -38 \hline \hline \hline \end{array} \)

\(\begin{array}{c} 64 \end{array} \)
Solve each word problem. Make a proof drawing if you need to.

1. Amon has 94 tomato seeds. He uses 27 of them for a science project. How many seeds does he have left?

 \[
 \underline{\text{94} - \text{27}\text{ Label}}
 \]

2. Benita makes 56 leaf prints. She gives 29 prints to her cousins. How many prints does Benita have now?

 \[
 \underline{\text{56} - \text{29} \text{ Label}}
 \]

3. Denise has 71 straws. She uses 33 of them to make a bridge. How many straws does she have left?

 \[
 \underline{\text{71} - \text{33} \text{ Label}}
 \]

4. Cedric has 70 sports cards. He gives away 24 cards to his friends. How many cards does Cedric have now?

 \[
 \underline{\text{70} - \text{24} \text{ Label}}
 \]
Estimate and then measure each side.
Then find the distance around the rectangle.

1. a. Complete the table. Use a centimeter ruler to measure.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the rectangle.

____ cm + _____ cm + _____ cm + _____ cm = _____ cm

Solve the word problem. Rewrite the 100 or make a drawing. Add to check your answer.

2. Amy has a box with 100 craft sticks in it. She uses some of them to make a project. There are 64 craft sticks left in the box. How many craft sticks did she use?

[Diagram]

3. Stretch Your Thinking Write a subtraction word problem with 29 as the answer.

[Blank space for answer]
Expanded Method

\[\begin{array}{c}
80 + 13 \\
93 = 90 + 3 \\
-57 = 50 + 7 \\
30 + 6 = 36
\end{array} \]

Ungroup First Method

\[\begin{array}{c}
813 \\
92 \\
-57 \\
36
\end{array} \]

Proof Drawing

Subtract using any method.

1. \[38 \quad 21 \]

2. \[57 \quad 39 \]

3. \[95 \quad 64 \]

4. \[50 \quad 13 \]

5. \[68 \quad 15 \]

6. \[77 \quad 29 \]

7. \[74 \quad 48 \]

8. \[84 \quad 49 \]
Write the unknown addend (partner).

1. $5 + \square = 13$
2. $6 + \square = 10$
3. $15 - 9 = \square$
4. $4 + \square = 11$
5. $13 - 6 = \square$
6. $12 - 7 = \square$

3. Under the coins, write the total amount of money so far. Then write the total using $\$.

Solve the word problem. Make a proof drawing if you need to.

4. Jackson has 62 pennies in his jar. He spends 38 of them. How many pennies does he have now?

- \square
- \square

5. **Stretch Your Thinking** How do you know if you need to ungroup a ten for ones when subtracting?

© Houghton Mifflin Harcourt Publishing Company
Subtract.

1. \(87 - 59 \)
2. \(63 - 14 \)
3. \(55 - 18 \)
4. \(73 - 17 \)
5. \(83 - 12 \)
6. \(99 - 35 \)
7. \(62 - 55 \)
8. \(71 - 49 \)
9. \(45 - 26 \)
10. \(50 - 11 \)
11. \(92 - 44 \)
12. \(75 - 52 \)
Remembering

Make a drawing. Write an equation. Solve the problem.

1. Lily has 14 markers. Her sister took some. Now Lily has 8 markers. How many did Lily's sister take?

Add.

2. \[
\begin{array}{c}
57 \\
+ 35 \\
\hline
92
\end{array}
\quad \begin{array}{c}
73 \\
+ 48 \\
\hline
121
\end{array}
\quad \begin{array}{c}
89 \\
+ 61 \\
\hline
150
\end{array}
\]

Subtract using any method.

3. \[
\begin{array}{c}
64 \\
- 27 \\
\hline
37
\end{array}
\quad \begin{array}{c}
95 \\
- 37 \\
\hline
58
\end{array}
\quad \begin{array}{c}
70 \\
- 41 \\
\hline
29
\end{array}
\]

4. Stretch Your Thinking Write and solve a subtraction exercise where you do not ungroup. Write and solve a subtraction exercise where you must ungroup.
Solve each word problem. Draw a proof drawing if you need to.

1. There are 200 water bottles on a table. The runners in a race take 73 of them. How many water bottles are left on the table?

 [Blank]
 label

2. There are 200 weeds in Kelly’s garden. Her little sister pulls out 44 of them. How many weeds are still in the garden?

 [Blank]
 label

Subtract.

3. \[200 - 66 \]
4. \[200 - 82 \]
5. \[200 - 54 \]

6. \[200 - 95 \]
7. \[200 - 38 \]
8. \[200 - 47 \]
Make a drawing. Write an equation. Solve the problem.

1. Sean finds 5 orange leaves and some yellow leaves. He finds 14 leaves in all. How many yellow leaves does he find?

 [draw a picture of leaves, label the number of orange leaves and solve for the number of yellow leaves]

Add. Use any method.

2. \[\begin{array}{c} 48 \\ + 75 \end{array} = \begin{array}{c} 64 \\ + 46 \end{array} = \begin{array}{c} 74 \\ + 89 \end{array} \]

Subtract.

3. \[\begin{array}{c} 56 \\ - 19 \end{array} = \begin{array}{c} 82 \\ - 53 \end{array} = \begin{array}{c} 61 \\ - 46 \end{array} \]

4. **Stretch Your Thinking** Suppose you subtract a 2-digit number from 200. Will you have to ungroup hundreds or tens? Explain. Give an example.
Decide if you need to ungroup. Then subtract.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>147</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>126</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>187</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>172</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Make a drawing. Write an equation. Solve the problem.

1. The coach gives out 8 large water bottles and 8 small water bottles. How many water bottles does the coach give out?

 8 + 8

 16

Add. Use any method.

2. 66
 + 77

 143

97
+ 84

181

53
+ 79

132

Subtract.

3. 200
 - 41

 159

200
- 73

127

200
- 57

143

4. Stretch Your Thinking Use the numbers below to complete the subtraction problem. Place the numbers so that you must ungroup two times. Then subtract.

 3
 __
 2

6
- 5

1

9
- 5

4

5

I06 UNIT 4 LESSON 8 Ungroup from the Left or from the Right
Homework

Decide if you need to ungroup. Then subtract.

1. 1 3 0
 - 9 9

2. 1 5 0
 - 3 9

3. 1 6 0
 - 6 7

4. 1 0 8
 - 8 8

5. 1 2 0
 - 8 3

6. 1 0 1
 - 7 2

Solve each word problem. Show your work.

7. There were 120 nickels in a jar. Janice took out 49 nickels. How many nickels are in the jar now?

 [Blank] ______________

 label

8. Last week, there were 109 books at the bookstore. So far, 25 books have been sold. How many books have not been sold?

 [Blank] ______________

 label
Add. Use doubles.

1. \(6 + 7 = \) \(\) \(8 + 7 = \) \(6 + 5 = \)

2. \(9 + 7 = \) \(11 + 9 = \) \(8 + 6 = \)

Estimate and then measure each side.
Then find the distance around the triangle.

3. \(\)

\[\begin{array}{c}
A \\
__cm \\
C \\
__cm \\
B \\
__cm \\
\end{array} \]

a. Complete the table.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(BC)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>(CA)</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

b. Find the distance around the triangle.

\[_____ \text{ cm} + _____ \text{ cm} + _____ \text{ cm} = _____ \text{ cm} \]

Decide if you need to ungroup. Then subtract.

4. \(169 - 44 = \) \(185 - 79 = \) \(132 - 68 = \)

5. **Stretch Your Thinking** Look at Evan’s subtraction problem. What did he do wrong?
Find the correct answer.

\[107 - 68 = 49 \]
What would you like to buy? First, see how much money you have. Pay for the item. How much money do you have left?

Yard Sale

- Globe: 85¢
- Ring: 67¢
- Sports Bag: 98¢
- Eraser: 79¢
- Color Pencils: 66¢

1. I have 124¢ in my pocket.
 - I bought the ____________.
 - 124¢
 - ____________¢

 I have ____________¢ left.

2. I have 152¢ in my pocket.
 - I bought the ____________.
 - 152¢
 - ____________¢

 I have ____________¢ left.

3. I have 145¢ in my pocket.
 - I bought the ____________.
 - 145¢
 - ____________¢

 I have ____________¢ left.

4. I have 131¢ in my pocket.
 - I bought the ____________.
 - 131¢
 - ____________¢

 I have ____________¢ left.
Find the total or partner.

1. \[\begin{array}{cccccc}
7 & 9 & 8 & 15 & 12 & 16 \\
+6 & +5 & +9 & -6 & -8 & -9 \\
\end{array} \]

Label the shapes using the words in the box.

- cube
- quadrilateral
- pentagon
- hexagon

2.

3.

Solve the word problem.

4. Logan buys a notebook with 106 pages. He uses 29 of the pages. How many pages are not used?

Show your work.

5. **Stretch Your Thinking** Kayla has 135¢. She buys a toy and has 78¢ left. What is the price of the toy she buys?
Subtract.

1. 29
 \[-13\]

2. 54
 \[-26\]

3. 75
 \[-25\]

4. 48
 \[-38\]

5. 90
 \[-57\]

6. 17
 \[-8\]

7. 100
 \[-42\]

8. 63
 \[-22\]

9. 97
 \[-59\]

10. Explain how you found the difference for Exercise 7.
Remembering

Make a matching drawing or draw comparison bars. Solve the problem.

Show your work.

1. Jayden has 8 grapes. Ashley has 6 more grapes than Jayden has.
 How many grapes does Ashley have?

 [Blank]

 label

Which sticker would you like to buy? First, see how much money you have. Pay for the sticker. How much money do you have left?

Sticker Sale

<table>
<thead>
<tr>
<th>Smile</th>
<th>Heart</th>
<th>Sun</th>
<th>Moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>78¢</td>
<td>89¢</td>
<td>76¢</td>
<td>97¢</td>
</tr>
</tbody>
</table>

2. I have 132¢ in my pocket.
 I bought the ____________________.

 132¢
 - ___¢

 I have _____________ ¢ left.

3. I have 164¢ in my pocket.
 I bought the ____________________.

 164¢
 - ___¢

 I have _____________ ¢ left.

4. Stretch Your Thinking Subtract.
 Which subtraction takes longer to do? Explain.

 A 64 B 92
 \[-31\] \[-47\]
Draw a Math Mountain to solve each word problem. Show how you add or subtract.

1. Papi has 148 slices of pizza in his shop. He sells 56 slices. How many slices does Papi have left?

 [Math Mountain Diagram]

 label

2. There are 34 children at the park. Then 16 children join them. How many children are at the park now?

 [Math Mountain Diagram]

 label

3. Bella has 19 crayons. She gives 12 of them to her friend. How many crayons does she have left?

 [Math Mountain Diagram]

 label

4. Seventy-nine girls and forty-eight boys are in Grade 2 at Center School. How many children are in Grade 2?

 [Math Mountain Diagram]

 label
Remembering

Make a drawing. Write an equation. Solve the problem.

1. Luke has 7 trucks. Zoe has 6 more trucks than Luke. How many trucks does Zoe have?

 Show your work.

 label

2. Show the data from the table on the line plot.

<table>
<thead>
<tr>
<th>Length of Stickers (in inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 inches</td>
</tr>
<tr>
<td>3 inches</td>
</tr>
<tr>
<td>4 inches</td>
</tr>
<tr>
<td>2 inches</td>
</tr>
<tr>
<td>3 inches</td>
</tr>
</tbody>
</table>

Subtract.

3.
 54
 - 31

4.
 81
 - 26

5.
 74
 - 7

6. Stretch Your Thinking Write and solve a subtraction word problem that starts with 146. The answer should be less than 100.

1. Write all of the equations for 74, 25, and 49.

\[
\begin{align*}
25 + 49 &= 74 \\
74 &= 25 + 49
\end{align*}
\]

2. Write all of the equations for 157, 68, and 89.

\[
\begin{align*}
68 + 89 &= 157 \\
157 &= 68 + 89
\end{align*}
\]
Add in any order. Write the total.

1. \(6 + 3 + 5 = \)
2. \(8 + 7 + 2 = \)

\[9 + 2 + 9 = \]
\[3 + 5 + 7 = \]
\[7 + 3 + 8 = \]
\[5 + 8 + 4 = \]

Make a drawing for each number. Write \(<\), \(>\), or \(=\).

3. 122 \(\bigcirc\) 131
4. 35 \(\bigcirc\) 28

Draw a Math Mountain to solve the word problem. Show how you add or subtract.

5. Berry Elementary School has 127 children. 69 of the children are girls. How many children are boys?

Show your work.

6. **Stretch Your Thinking** When would there be only four different equations for a set of Math Mountain numbers? Give an example.
Add or subtract. Watch the sign!

1. \[75 + 25\]
2. \[14 + 6\]
3. \[47 + 38\]

4. \[87 - 48\]
5. \[34 + 18\]
6. \[27 - 8\]

7. \[100 - 85\]
8. \[67 - 29\]
9. \[58 + 37\]

10. \[81 - 53\]
11. \[47 + 37\]
12. \[99 - 39\]
Remembering

Make a drawing. Write an equation. Solve the problem.

1. Mayumi shops with her mom.
 She puts 8 oranges in the basket.
 Her mom puts in 7 more oranges.
 How many oranges are in the basket now?

2. Write all of the equations for 83, 35, 48.

 \[
 83 \\
 \overline{35 + 48 = 83} \\
 83 = 35 + 48
 \]

 \[
 46 \\n +17 \\n \overline{53}
 \]
Mr. Green wants to buy some things at a flea market. He will pay for the items with one dollar (100 cents). How much change will he get back?

<table>
<thead>
<tr>
<th>Mittens</th>
<th>Toy Binoculars</th>
<th>Toy Camera</th>
<th>Toy Lamb</th>
<th>Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>17¢</td>
<td>39¢</td>
<td>46¢</td>
<td>28¢</td>
<td>52¢</td>
</tr>
</tbody>
</table>

1. Mr. Green buys the mittens and the plant.

 ____ ¢

 + ____ ¢

 Total:______

 100¢ - _____ = ____

 His change will be _____ ¢.

2. Mr. Green buys the toy lamb and the toy camera.

 ____ ¢

 + ____ ¢

 Total:______

 100¢ - _____ = ____

 His change will be _____ ¢.

3. Mr. Green buys the toy binoculars and the toy lamb.

 ____ ¢

 + ____ ¢

 Total:______

 100¢ - _____ = ____

 His change will be _____ ¢.

4. Mr. Green buys the toy camera and the plant.

 ____ ¢

 + ____ ¢

 Total:______

 100¢ - _____ = ____

 His change will be _____ ¢.
Add or subtract.
1. \[\begin{array}{cccccccc}
5 & 9 & 6 & 13 & 18 & 14 \\
+4 & +6 & +8 & -8 & -9 & -9 \\
\end{array} \]

Cross out the extra information or write hidden or missing information. Then solve the problem.
2. Latisha has some apples. She buys 5 more. How many apples does she have now?

\[\text{\underline{\text{label}}} \]

Add or subtract. Watch the sign!
3. \[\begin{array}{cccc}
73 & 56 & 100 \\
-38 & +27 & -47 \\
\end{array} \]

4. **Stretch Your Thinking** Rashid has one dollar (100 cents). He wants to buy a ball for 50 cents. He also wants to buy two other toys and still have money left over. Explain what Rashid needs to do when choosing the two toys.
Add up to solve each word problem.

Show your work.

1. Rudy has 45 ants in his ant farm. He adds some more ants to the ant farm. Now there are 69 ants. How many ants does Rudy add to the ant farm?

 label

2. Tina has 92 flowers in her garden this morning. After she takes some flowers to school, there are 33 flowers in her garden. How many flowers does Tina take to school?

 label

3. Lia collects 86 buttons. Then she gives some to Matt. Now Lia has 61 buttons. How many buttons does Lia give to Matt?

 label

4. There were 73 cars in the garage this morning. Now there are 24 cars in the garage. How many cars left the garage?

 label
Add. Use doubles.

1. \(5 + 6 = \) \[\square\] \(9 + 7 = \) \[\square\] \(10 + 8 = \) \[\square\]

2. \(7 + 8 = \) \[\square\] \(8 + 8 = \) \[\square\] \(7 + 6 = \) \[\square\]

Mia and Tom buy things at the school store. They will each pay for the items with one dollar (100 cents).

How much change will they each get back?

Eraser	Sticker	Pen	Marker	Glue stick
37¢ | 16¢ | 34¢ | 51¢ | 48¢

3. Mia buys the marker and the sticker.

\[\text{Total: } \square \text{ } \]
\[100\text{¢} - \square = \square \]

Her change will be \(\square \text{¢} \).

4. Tom buys the eraser and the glue stick.

\[\text{Total: } \square \text{ } \]
\[100\text{¢} - \square = \square \]

His change will be \(\square \text{¢} \).

5. Stretch Your Thinking Use the pictures and prices above.
Suppose Mia has another 100 cents and buys one item. If she has 66¢ left, how can you tell which item she bought? Explain.
Solve each word problem.

1. Alma and Larry have stickers to put on their poster. Alma has 28 stickers. They have 84 stickers in all. How many stickers does Larry have?

2. There are 61 magazines in the library. Then more magazines are delivered. Now there are 100 magazines. How many new magazines are delivered to the library?

3. Mori puts 95 pretzels in a bowl. Her friends eat some. Now there are 72 pretzels in the bowl. How many pretzels do her friends eat?

4. Eric’s basketball team scores 36 points in the first game. They score some points in the second game. In the two games, they score 52 points in all. How many points do they score in the second game?
Use your centimeter ruler. Measure the horizontal line segment below by marking and counting 1-cm lengths.

1. \[\underline{\text{cm}} \]

Add ones or tens.

2. \[5 + 6 = \underline{\text{cm}} \]
 \[8 + 7 = \underline{\text{cm}} \]
 \[9 + 4 = \underline{\text{cm}} \]
 \[50 + 60 = \underline{\text{cm}} \]
 \[80 + 70 = \underline{\text{cm}} \]
 \[90 + 40 = \underline{\text{cm}} \]

Add up to solve the word problem.

3. Austin has 65 United States stamps. He gets more stamps from other countries. Now he has 84 stamps. How many stamps are from other countries?

\[\underline{\text{stamps}} \]

4. **Stretch Your Thinking** Look at Problem 3. Did you add to solve the problem? Explain.
Write an equation. Solve the word problem.

1. Abigail’s mother gives her some carrots to sell at the state fair. Abigail picks 16 more carrots from the garden. Now Abigail has 73 carrots to sell. How many carrots did her mother give her?

2. Stanley the grocer has lots of onions. He sells 44 onions in the morning. Now he has 48 onions left to sell. How many onions did Stanley have to begin with?

3. At the end of the first half of the basketball game, Carmen’s team has 23 points. At the end of the second half, they have 52 points. How many points did Carmen’s team score in the second half of the game?

4. Mr. Art has 88 sheets of paper in his cabinet. He gives some paper to his students. Then he has 61 sheets of paper left. How many sheets of paper did Mr. Art give to his students?
Find the unknown addend (unknown partner).

1. $5 + \square = 13$ \hspace{1cm} 16 $- 7 = \square$ \hspace{1cm} 6 $+ \square = 14$

2. $9 + \square = 16$ \hspace{1cm} 15 $- 8 = \square$ \hspace{1cm} 13 $- 7 = \square$

3. **Draw a Picture and Explain** Draw two different Math Mountains with a total of 13. Explain why you can make two different Math Mountains.

 \[
 \begin{array}{c}
 \text{Math Mountain 1} \\
 \text{Math Mountain 2}
 \end{array}
 \]

Solve the word problem.

4. Erin has 56 crayons. She gets some new ones. Now she has 82 crayons. How many new crayons did she get?

 \[
 \begin{array}{c}
 \text{Show your work.} \\
 \text{Erin has 56 crayons. She gets some new ones. Now she has 82 crayons. How many new crayons did she get?}
 \end{array}
 \]

5. **Stretch Your Thinking** Write and solve a word problem that has an unknown start number. Use 2-digit numbers.

 \[
 \begin{array}{c}
 \text{Start Unknown Problems}
 \end{array}
 \]
Draw comparison bars and write an equation to solve each problem.

1. Tran has 29 seashells. Vimi has 63 seashells. How many fewer seashells does Tran have than Vimi?

2. Justine and Morgan are buying feathers at the craft store. Morgan buys 17 more feathers than Justine. Morgan buys 76 feathers. How many feathers does Justine buy?

3. Ali has 54 guppies in her fish tank. Peter has 28 more guppies than Ali. How many guppies does Peter have in his fish tank?

4. Stanley the grocer buys 91 bags of flour for his store. Ted buys 46 fewer bags of flour than Stanley. How many bags of flour does Ted buy?
Remembering

Draw lines to make pairs. Write odd or even.

1. ___________________________ 2. ___________________________

Be the helper. Is the answer OK? Write yes or no.
If no, fix the mistake and write the correct answer.

3. 59 OK? 4. 16 OK? 5. 37 OK?
\[\begin{align*}
 +23 & \quad \underline{+58} & \quad \underline{+49} \\
 82 & \quad \underline{64} & \quad \underline{716}
\end{align*} \]

Write an equation. Solve the word problem.

6. Mrs. Patel has some plates.
 She uses 37 of them at the picnic. She has 58 plates left.
 How many plates were in the stack to start with?

7. Stretch Your Thinking Write and solve a word problem that matches the drawing.

\[\begin{align*}
 & \underline{63} \\
 & \underline{? \quad 29}
\end{align*} \]
Make a drawing. Write an equation. Solve.

1. Mariko has 63 photos in her photo book. That is 23 fewer photos than Sharon has. How many photos does Sharon have?

 \[
 _
 \]

 label

2. Fred has some crayons. He gives Drew 26 crayons. Now Fred has 42 crayons. How many crayons did Fred start with?

 \[
 _
 \]

 label

3. Marisa brings out 60 bowls for the party. Thirty-five of the bowls are large. The rest are small. How many small bowls does Marisa bring out?

 \[
 _
 \]

 label

4. Sean sells 35 tickets for the school play. If he sells 24 more tickets, he will sell all the tickets he had at the start. How many tickets did Sean start with?

 \[
 _
 \]

 label
Remembering

Add.

1. \(15 + 29 + 34 = \) ______

2. \(23 + 38 + 27 + 59 = \) ______

Solve the word problem.

3. Carter has 5 jersey shirts, 4 solid shirts, and some plaid shirts. He has 15 shirts altogether. How many plaid shirts does he have?

 [Blank] ________

 label

Show your work.

Draw comparison bars and write an equation to solve the problem.

4. Max has 72 pennies. Jada has 34 fewer pennies than Max. How many pennies does Jada have?

 [Blank] ________

 label

5. Stretch Your Thinking Write and solve a word problem that matches the drawing.

 Ryan 55
 Erin ? 29

130 UNIT 4 LESSON 20

Mixed Word Problems
Think about the first-step question.
Then solve the problem.

1. Luisa has 35 building blocks. Jack gives her 18 more blocks. Luisa uses 26 blocks to build a castle. How many blocks are not used in the castle?

 \[
 \square \quad \underline{\text{label}}
 \]

2. There are 45 red apples and 24 green apples for sale at a farm stand. The farmer sells some apples. Now she has 36 apples left. How many apples does the farmer sell?

 \[
 \square \quad \underline{\text{label}}
 \]

3. Maria has 16 more beads than Gus. Gus has 24 beads. Denise has 12 more beads than Maria. How many beads does Denise have?

 \[
 \square \quad \underline{\text{label}}
 \]
Find the total or partner.

1. \[\begin{array}{ccccccc}
7 & 6 & 9 & 16 & 12 & 17 \\
+ & 8 & + & 8 & + & 6 & - & 8 & - & 7 & - & 9 \\
\end{array}\]

2. Look for shapes in your classroom and school.
 List or draw objects that show triangles.

Make a drawing. Write an equation. Solve.

3. Eric has 53 baseball cards.
 17 cards are new. The rest are old.
 How many baseball cards are old?

 \[\text{label}\]

4. **Stretch Your Thinking** Write a 2-step word problem that uses subtraction then addition. Solve.

 \[\text{Problem:}\]

 \[\text{Solution:}\]
Think about the first-step question.
Then solve the problem.

1. There are 45 children at the park in the morning.
 25 are boys and the rest are girls. Some more
 girls come to the park in the afternoon. Now there
 are 30 girls at the park. How many girls come
 to the park in the afternoon?

 \[\square \]
 \[\text{label} \]

2. Jonah has 36 sheets of green paper and
 26 sheets of blue paper. He gives some
 sheets of green paper to Tova. Now he has
 42 sheets of paper. How many sheets of
 green paper does he give Tova?

 \[\square \]
 \[\text{label} \]

3. There are 16 mystery books, 22 history books,
 and 21 science books in a large bookcase.
 A smaller bookcase has 30 fewer books.
 How many books are in the smaller bookcase?

 \[\square \]
 \[\text{label} \]
Remembering

Estimate and then measure each side. Then find the distance around the rectangle.

1. a. Complete the table. Use a centimeter ruler to measure.

<table>
<thead>
<tr>
<th>Side</th>
<th>Estimate</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Find the distance around the rectangle.

____ cm + ____ cm + ____ cm + ____ cm = ____ cm

Think about the first-step question. Then solve the problem.

2. Kate has 37 old crayons and 45 new crayons. She gives some crayons to Sam. Now she has 56 crayons. How many crayons did she give to Sam?

label

3. Stretch Your Thinking Use the information in the table to write a 2-step word problem. Then solve.

<table>
<thead>
<tr>
<th>Points Scored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will</td>
</tr>
<tr>
<td>Ava</td>
</tr>
<tr>
<td>Cody</td>
</tr>
</tbody>
</table>
The children on the math team each measured the length of one of their feet. They made a table to show their data.

<table>
<thead>
<tr>
<th>Name</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marta</td>
<td>19 cm</td>
</tr>
<tr>
<td>Pete</td>
<td>18 cm</td>
</tr>
<tr>
<td>Alberto</td>
<td>20 cm</td>
</tr>
<tr>
<td>Miko</td>
<td>13 cm</td>
</tr>
<tr>
<td>Sasha</td>
<td>16 cm</td>
</tr>
</tbody>
</table>

Use the table to solve each word problem.

1. How much longer is Alberto’s foot than Pete’s?
 ![Blank space for calculation]
 label

2. Which child has a foot that is 3 cm longer than Sasha’s?

3. Miko’s foot is 2 cm shorter than Jon’s. What is the length of Jon’s foot?
 ![Blank space for calculation]
 label

4. Use the information in the table to write your own problem. Solve the problem.
 ![Blank space for calculation]
 ![Blank space for calculation]
 ![Blank space for calculation]
 ![Blank space for calculation]
Complete the addition doubles equation.

1. \[\square + \square = 14 \]
2. \[\square + \square = 8 \]
3. \[\square + \square = 6 \]
4. \[\square + \square = 18 \]

Add.

5. \[\begin{array}{c} 46 \\ + 28 \end{array} \]
6. \[\begin{array}{c} 34 \\ + 57 \end{array} \]
7. \[\begin{array}{c} 69 \\ + 52 \end{array} \]

Think about the first-step question. Then solve the problem.

6. The coach gets a delivery of 24 large uniforms, 18 medium uniforms, and 25 small uniforms. He returns 19 of the uniforms. How many uniforms does the coach have now?

[Blank] label

7. **Stretch Your Thinking** Use a centimeter ruler to measure four objects. Record each length. Then write a question and solve.

<table>
<thead>
<tr>
<th>Object</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
My Hundreds Chart

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Counting to 120

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>
Complete one of the activities below (either through discussion or in writing) and mark it off with an X. The next time you do an activity, mark it with an O. Switch back and forth between X and O until you have a tic tac toe!

<table>
<thead>
<tr>
<th>Explain how you are like one of the characters from the story.</th>
<th>What character in your story would you like to invite over to your house? Explain why.</th>
<th>Design a new cover for the book. Include title and author.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain why you chose this book to read?</td>
<td>Tell, or write, a three-sentence summary of what you read. Be sure to include the details in order.</td>
<td>If you were the author, what is one thing you would change about the book and why?</td>
</tr>
</tbody>
</table>
Complete one of the activities below (either through discussion or in writing) and mark it off with an X. The next time you do an activity, mark it with an O. Switch back and forth between X and O until you have a tic tac toe!

<table>
<thead>
<tr>
<th>What do you already know about this topic?</th>
<th>Why do you think the author organized the text the way he/she did?</th>
<th>How do you know this book is a non-fiction text?</th>
</tr>
</thead>
<tbody>
<tr>
<td>How can you use the information you learned from the text in other parts of your life?</td>
<td>What have you learned from the illustrations, graphics or photos in the text?</td>
<td>What was one fact from the book that surprised you?</td>
</tr>
<tr>
<td>What is the most important part of the text you have read so far? Why?</td>
<td>What questions would you want to ask the author of this text?</td>
<td>If you were the author of the text, what else would you have included in the book?</td>
</tr>
</tbody>
</table>
Do you like to figure out how things work? Are you excited about solving problems? If so, you might think about becoming an engineer.

Engineers work to find solutions to problems. They also design new products that help people.

Some engineers work to make cars safer. Other engineers figure out how to build strong bridges. Some engineers develop new medicines or find better ways to keep foods fresh and safe.

Engineers start by identifying a problem to solve or a new product to design. They search for ways to fix the problem or make the product. They look at different ideas and choose the best one.
Often, engineers make a model and test it. They look for ways to improve what they have made.

Sandra Cruz-Pol is an engineer. She also teaches engineering students at a college. Sandra designs products that let people know when storms and floods are coming. She says it feels good to find ways to improve people's lives.
1. What do engineers work to find?
 A. solutions to problems
 B. the best colleges in the United States
 C. storms and floods

2. Solving a problem is a process. What is the first step in that process?
 A. identifying the problem
 B. choosing the best idea to solve the problem
 C. searching for ways to fix the problem

3. Read this paragraph from the article.

"Do you like to figure out how things work? Are you excited about solving problems? If so, you might think about becoming an engineer."

What can be concluded about engineers from this information?
 A. Engineers like figuring out how things work, but they do not like solving problems.
 B. Engineers like figuring out how things work and solving problems.
 C. Engineers like solving problems, but they do not like figuring out how things work.

4. Read this paragraph from the article.

"Engineers start by identifying a problem to solve or a new product to design. They search for ways to fix the problem or make the product. They look at different ideas and choose the best one."

What can be concluded from this information about the number of solutions there are to a problem?
 A. There is only one solution to every problem.
 B. Some problems do not have any solutions.
 C. There may be more than one solution to a problem.
5. What is the main idea of this article?

A. Engineers help other people by solving problems and designing new products.
B. Sandra Cruz-Pol is an engineer who designs products that let people know when storms and floods are coming.
C. Some engineers help people by finding better ways to keep foods fresh and safe.

6. Read this paragraph from the article.

"Engineers work to find solutions to problems. They also design new products that help people."

Which word in the first sentence does "they" refer to?

A. problems
B. engineers
C. solutions

7. Choose the answer that best completes this sentence.

Sandra Cruz-Pol is an engineer, ______ she works to find solutions to problems.

A. so
B. because
C. but

8. What do some engineers work to make safer?

9. Describe the products that Sandra Cruz-Pol designs.

10. Engineers design new products that help people.

Explain how a product designed by an engineer might help people. Support your answer with evidence from the article.