<table>
<thead>
<tr>
<th>Session(s)</th>
<th>Concept/Main Idea</th>
<th>Corresponding Pencil-Paper Packet Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>Unit 4
Lesson 1- Place Value
Lesson 2- Build Numbers
Lesson 3- Place Value in Word Problems
Lesson 4- Practice With Place Value</td>
<td>MX SAB Pages:
- 217-218 - Practice Place Value Drawings (1)
- 219-220 - Read and Write Numbers (2)
- 221-222- Practice with Place Value (3)</td>
</tr>
<tr>
<td>4-6</td>
<td>Unit 4
Lesson 5- Rounding to the Nearest Hundred
Lesson 6- Round to the Nearest Ten</td>
<td>MX SAB Pages:
- 223-224- Estimate by Rounding to Nearest Hundred (4)
- 225-226- Round to the Nearest Ten (5)
- 227- Reasonable Answers (6)
- 228- Puzzled Penguin/Estimation (6)</td>
</tr>
<tr>
<td>7-10</td>
<td>Unit 4
Lesson 7- Explore Multidigit Addition
Lesson 8- Discuss Addition Methods</td>
<td>MX SAB Pages:
- 229-230- Addition Methods (7)
- 231-232- Discuss Addition Methods (8)
- 234-235 Solve Word Problems With Multi Digit Numbers (9-10)</td>
</tr>
<tr>
<td>11-12</td>
<td>Unit 4
Lesson 11- Ungroup to Subtract
Lesson 12- Subtract Across Zeros</td>
<td>MX SAB Pages:
- 237-238- Discuss Subtraction Methods (11)
- 239-240- Subtraction Across Zeros (12)</td>
</tr>
<tr>
<td>13-14</td>
<td>Unit 4
Lesson 14- Relate Addition and Subtraction
Lesson 17- Reasonable Answers</td>
<td>MX SAB Pages:
- 245-246 Relate Addition and Subtraction Methods (13)
- 252 Reasonable Answers (Important skill to focus on) (14)</td>
</tr>
</tbody>
</table>
| 15 | Unit 4
Lesson 17- Identify Patterns in Addition Table and Relate to Properties | Symmetry of the addition table |
|----|--|-------------------------------|
| 16-17 | Unit 6- Perimeter and Area and Side Lengths for Perimeter and Area | **MX SAB Pages:**
- 317-318- Recognize Perimeter and Area (16)
- 321-322- Equations for Area (17) |
| 18-19 | Unit 7- Understand Fractions | **MX SAB Pages:**
- 351-352- Unit Fractions and Fraction Bars (18-19) |
| 20 | Unit 7- Model Fractions | **MX SAB Pages:**
- 353-354- Use Fraction Bar and Number Lines (20-21) |
| 21-22 | Unit 7- Locate Fractions on a Number Line | **MX SAB Pages:**
- 355- Locate Fractions Less Than 1 (21)
- 356- Locate Fractions Greater Than 1 (22)
- 357- Find 1 on the Number Line |
| 23-25 | Unit 7
Lesson 4- Comparing Unit Fractions
Lesson 5- Compare Fractions | **MX SAB Pages:**
- 361A-361- Compare Fractions with Circles (23)
- 362- Compare Fractions (24-25) |
| 26-28 | Unit 7
Lesson 6- Introduce Equivalence
Lesson 7- Equivalent Fractions | **MX SAB Pages:**
- 363- Halves, Fourths, and Eighths (26)
- 364- Thirds and Sixths (27)
- 365-366- Equivalent Fractions on Number Lines (28) |
Practice Place Value Drawings to 999

Write the number for each dot drawing.

1.

Write the number for each place value drawing.

3. □ □ |||| || ooooo

4. □ □ □ |||| o

5. □ □ □ || ooo

6. □ □ □ |||| oooo

Make a place value drawing for each number.

7. 86

8. 587
Practice with the Thousand Model

Write the number for each place value drawing.

9. 1,000
10. 1,000

Make a place value drawing for each number.

11. 2,368
12. 5,017

Write Numbers for Word Names

Write the number for the words.

13. eighty-two _______________________
14. ninety-nine _______________________
15. four hundred sixty-seven _____________
16. nine hundred six ___________________
17. one thousand, fifteen ______________
18. eight thousand, one hundred twenty ____________
Read and Write Numbers

Write the number for the words.

1. two hundred twelve
2. two thousand, eight
3. nine hundred ninety-one
4. six thousand, fifty-one
5. four hundred sixteen
6. six hundred nine
7. nine hundred eighty-seven
8. five thousand, thirty
9. four thousand, seventeen
10. eight thousand, six hundred

Write the word name for each number.

11. 783
12. 907
13. 3,001
14. 8,043

Write each number in expanded form.

15. 314
16. 2,148
17. 7,089
18. 8,305

Write each number in standard form.

19. 5 thousands + 8 tens + 7 ones
20. 6 thousands + 4 hundreds + 5 ones
Solve and Discuss

Use a place value drawing to help you solve each problem. Label your answers.

21. Scott baked a batch of rolls. He gave a bag of 10 rolls to each of 7 friends. He kept 1 roll for himself. How many rolls did he bake in all?

22. Sixty-two bags of hot dog buns were delivered to the school cafeteria. Each bag had 10 buns. How many buns were delivered?

Mario and Rosa baked 89 corn muffins. They put the muffins in boxes of 10.

23. How many boxes did they fill? 24. How many muffins were left over?

Zoe’s scout troop collected 743 cans of food to donate to a shelter. They put the cans in boxes of 10.

25. How many boxes did they fill? 26. How many cans were left over?

27. Math Journal Write your own place value word problem. Make a drawing to show how to solve your problem.
Scrambled Place Value Names

Unscramble the place values and write the number.

1. 8 ones + 6 hundreds + 4 tens
2. 9 hundreds + 7 tens + 1 one

3. 5 ones + 0 tens + 7 hundreds
4. 5 tens + 4 ones + 3 hundreds

5. 2 tens + 2 hundreds + 2 ones
6. 8 hundreds + 3 ones + 6 tens

Unscramble the place values and write the number.
Then, make a place value drawing for the number.

7. 6 hundreds + 9 ones + 3 tens
8. 9 ones + 3 tens + 8 hundreds

9. 8 ones + 3 hundreds + 4 tens
10. 2 hundreds + 9 tens + 1 one
Solve and Discuss

Solve each problem. Label your answer.

11. The bookstore received 35 boxes of books. Each box held 10 books. How many books did the store receive?

Maya’s family picked 376 apples and put them in baskets. Each basket held 10 apples.

12. How many baskets did they fill?

13. How many apples were left over?

Aidee had 672 buttons. She put them in bags of 100 buttons each.

14. How many bags did Aidee fill?

15. How many buttons were left over?

When Joseph broke open his piggy bank, there were 543 pennies inside. He grouped the pennies into piles of 100.

16. How many piles of 100 did Joseph make?

17. How many extra pennies did he have?
Estimate

Solve the problem.

1. Tasha read three books over the summer. Here is the number of pages in each book:

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watership Down</td>
<td>494</td>
</tr>
<tr>
<td>Sounder</td>
<td>128</td>
</tr>
<tr>
<td>The Secret Garden</td>
<td>368</td>
</tr>
</tbody>
</table>

About how many pages did Tasha read? Explain how you made your estimate.

Practice Rounding

Round each number to the nearest hundred. Use drawings or Secret Code Cards if they help you.

2. 128
3. 271
4. 376
5. 649
6. 415
7. 550
8. 62
9. 1,481
10. 2,615

11. Explain Your Thinking. When you round a number to the nearest hundred, how do you know whether to round up or round down?
Solve Problems by Estimating

Solve by rounding to the nearest hundred.

12. At the Lakeside School, there are 286 second graders, 341 third graders, and 377 fourth graders. About how many students are there at the Lakeside School?

13. Last week, Mrs. Larson drove 191 miles on Monday, 225 miles on Wednesday, and 107 miles on Friday. About how many miles did she drive altogether?

14. Of the 832 people at the hockey game, 292 sat on the visiting team side. The rest sat on the home team side. About how many people sat on the home team side?

Reasonable Answers

Use rounding to decide if the answer is reasonable. Then find the answer to see if you were right.

15. $604 - 180 = 586$

16. $377 + 191 = 568$

17. $268 - 17 = 107$

18. $1,041 + 395 = 646$

19. $407 - 379 = 28$

20. $535 + 287 = 642$

Round to the Nearest Hundred
Round 2-Digit Numbers to the Nearest Ten

Round each number to the nearest ten.

1. 63
2. 34
3. 78
4. 25
5. 57
6. 89
7. 42
8. 92

Round 3-Digit Numbers to the Nearest Ten

Round each number to the nearest ten.

9. 162
10. 741
11. 309
12. 255
13. 118
14. 197
15. 503
16. 246

17. Explain Your Thinking: When you round a number to the nearest ten, how do you know whether to round up or round down?

__

__

__

__
Estimate the Answer

Solve each problem.

18. The chart at the right shows how many smoothies the Juice Hut sold yesterday. By rounding each number to the nearest ten, estimate how many smoothies the Juice Hut sold in all.

- Smoothies Sold at Juice Hut
 - 13 raspberry-peach smoothies
 - 38 strawberry-banana smoothies
 - 44 guava-mango smoothies
 - 61 peach-blueberry smoothies

19. Ms. Singh has 52 rock CDs, 75 jazz CDs, 36 classical CDs, and 23 hip-hop CDs. Round each number to the nearest ten to find about how many CDs she has.

20. Roz rented a video that is 123 minutes long. She watched 48 minutes of it. Round each number to the nearest ten to estimate how many more minutes she has to watch.

Use the table at the right to solve Problems 21–23.

21. Estimate the total number of books the school received by rounding each number to the nearest hundred.

<table>
<thead>
<tr>
<th>Jefferson Elementary School Books Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
</tr>
<tr>
<td>Reading</td>
</tr>
</tbody>
</table>

22. Estimate the total number of books the school received by rounding each number to the nearest ten.

23. Find the total number of math and reading books. Which of your estimates is closer to the actual total?

Round to the Nearest Ten
Reasonable Answers

Use rounding to decide if the answer is reasonable. Write yes or no. Then find the answer to see if you were correct.

24. $93 - 29 = 64$
25. $113 + 57 = 140$
26. $83 + 19 = 102$

27. $336 + 258 = 594$
28. $438 - 158 = 280$
29. $437 + 199 = 536$

30. $725 - 235 = 590$
31. $249 + 573 = 822$
32. $542 - 167 = 475$

What's the Error?

Dear Math Students,

Today my teacher asked me to estimate the answer to this problem:

Ms. Smith's class brought in 384 soup labels.
Mr. Alvarez's class brought in 524 soup labels. About how many labels did the two classes bring in?

\[
\begin{array}{c@{}c@{}c@{}c@{}c}
384 & + & 524 & \Rightarrow & 800 \\
\end{array}
\]

About 800 soup labels were brought in.

Is my answer correct? If not, please correct my work and tell me what I did wrong.

Your friend,
Puzzled Penguin

33. Write an answer to Puzzled Penguin.

Estimate the Number of Objects

Jar D has 100 Beans. Estimate how many beans are in the other jars.

34. Jar A

35. Jar B

36. Jar C

Jar A Jar B Jar C Jar D
100 Beans

Round to the Nearest Ten
Solve and Discuss

Solve each problem. Label your answer. Use your Mathboard or a separate sheet of paper.

1. Elena made necklaces for her friends. She used 586 green beads and 349 red beads. How many beads did Elena use in all?

2. Fabrice has a collection of 485 basketball cards and 217 baseball cards. How many sports cards does Fabrice have in all?

Introduce Addition Methods

Tonya and Mark collect seashells. Tonya has 249 shells, and Mark has 386 shells. How many shells do they have in all?

Here are three ways to find the answer:

<table>
<thead>
<tr>
<th>Show All Totals Method</th>
<th>New Groups Below Method</th>
<th>New Groups Above Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>249</td>
<td>249</td>
</tr>
<tr>
<td>+ 386</td>
<td>+ 386</td>
<td>+ 386</td>
</tr>
<tr>
<td>500</td>
<td>635</td>
<td>635</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>635</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proof Drawing:

6 hundreds

3 tens

5 ones
Practice Addition Methods

Solve each problem. Make proof drawings to show that your answers are correct.

3. Ryan has two stamp albums. One album has 554 stamps, and the other has 428 stamps. How many stamps does Ryan have in all?

4. One week Ashley read 269 pages. The next week she read 236 pages. What is the total number of pages she read in the two weeks?

5. The video store has 445 comedy videos and 615 drama videos. How many comedy and drama videos does the store have altogether?

6. Ali has 128 photos of her pets and 255 photos of her family. How many photos does Ali have altogether?
Solve each problem using a numerical method and a proof drawing.

1. There are 359 cars and 245 trucks in the parking garage. How many vehicles are in the garage?

2. The Creepy Crawler exhibit at the science museum has 693 spiders and 292 centipedes. How many spiders and centipedes are there in all?

3. On Saturday, 590 people went to the art museum. On Sunday, 355 went to the museum. How many people went to the museum altogether?

4. There were 120 people on the ferry yesterday. Today the ferry had 767 people. How many people in all were on the ferry during the past two days?
What's the Error?

Dear Math Students,

Today I found the answer to $168 + 78$, but I don't know if I added correctly. Please look at my work. Is my answer right? If not, please correct my work and tell what I did wrong.

Your friend,
Puzzled Penguin

5. Write an answer to Puzzled Penguin.

PATH TO FLUENCY Line Up the Places to Add

Write each addition vertically. Line up the places correctly. Then add and make a proof drawing.

6. $179 + 38 = \underline{\underline{\underline{}}} \\

7. $650 + 345 = \underline{\underline{\underline{}}} \\

8. $407 + 577 = \underline{\underline{\underline{}}}
Solve and Discuss

Write an equation and solve the problem.

18. Jacob has 347 basketball cards in his collection. He has 256 baseball cards. How many cards does he have altogether?

19. Jasmine’s family drove for two days to visit her grandparents. They drove 418 miles on the first day and 486 miles on the second day. How many miles did they drive in all?

20. The florist ordered 398 roses and 562 tulips. How many flowers did the florist order in all?

21. Emilio checked a suitcase at the airport. His suitcase weighed 80 pounds. His wife checked three suitcases. Each of her suitcases weighed 30 pounds. How many pounds in all did their suitcases weigh?

22. Write and solve an addition word problem where 287 and 614 are addends.
Add Three-Digit Numbers

School Carnival Rides

<table>
<thead>
<tr>
<th>Rides</th>
<th>Tickets Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twister</td>
<td>298</td>
</tr>
<tr>
<td>Monster Mix</td>
<td>229</td>
</tr>
<tr>
<td>Crazy Coaster</td>
<td>193</td>
</tr>
<tr>
<td>Mega Wheel</td>
<td>295</td>
</tr>
<tr>
<td>Bumper Cars</td>
<td>301</td>
</tr>
</tbody>
</table>

Write an equation and solve the problem.

1. How many people went on the two most popular rides?

2. The total tickets sold for which two rides was 494?

3. Tickets for the Monster Mix and Crazy Coaster sold for $2. How much money did the school earn on the ticket sales for these two rides?

4. About how many tickets were sold for Twister, Monster Mix, and Mega Wheel altogether?

5. The total tickets sold for which three rides equals about 900?
What's the Error?

Dear Math Students,

Today I found the answer to 134 - 58, but I don't know if I did it correctly. Please look at my work. Is my answer right? If not, please correct my work and tell what I did wrong.

\[
\begin{array}{c}
134 \\
-58 \\
\hline
124
\end{array}
\]

Your friend,
Puzzled Penguin

5. Write an answer to Puzzled Penguin.

Subtraction Detective

To avoid making subtraction mistakes, look at the top number closely. Do all the ungrouping you need to before you subtract. The magnifying glass around the top number helps you remember to be a "subtraction detective."

Subtract. Show your ungroupings numerically and with proof drawings.

6. \[
\begin{array}{c}
371 \\
-86 \\
\hline
285
\end{array}
\]

7. \[
\begin{array}{c}
163 \\
-47 \\
\hline
116
\end{array}
\]

8. \[
\begin{array}{c}
459 \\
-175 \\
\hline
284
\end{array}
\]

9. \[
\begin{array}{c}
277 \\
-68 \\
\hline
209
\end{array}
\]
Ungroup to Subtract

Solve each problem. Show your work numerically and with proof drawings.

1. Lakesha bought a box of 500 paper clips. So far, she has used 138 of them. How many are left?

2. A movie theater has 400 seats. At the noon show, 329 seats were filled. How many seats were empty?

3. At the start of the school year, Seiko had a brand new box of 300 crayons. Now 79 crayons are broken. How many unbroken crayons does Seiko have?
Ungroup to Subtract

Solve each problem. Show your work numerically and with proof drawings.

1. Lakesha bought a box of 500 paper clips. So far, she has used 138 of them. How many are left?

2. A movie theater has 400 seats. At the noon show, 329 seats were filled. How many seats were empty?

3. At the start of the school year, Seiko had a brand new box of 300 crayons. Now 79 crayons are broken. How many unbroken crayons does Seiko have?
Subtract Across Zeros

Solve each problem. Show your work numerically and with proof drawings.

4. The students at Freedom Elementary School have a goal of reading 900 books. They have read 342 books. How many books do the students have left to read?

5. There are 500 books in the Freedom Elementary School library. There are 179 fewer non-fiction than fiction books. How many books are fiction?

6. The students at Olympia Elementary School collected 1,000 bottles for recycling. The students at Sterling Elementary collected 768 bottles. How many more bottles did the students at Olympia collect?
Relate Addition and Subtraction

Solve each problem. Make a proof drawing if you need to.

1. There were 138 students in the gym for the assembly. Then 86 more students came in. How many students were in the gym altogether?

2. There were 224 students in the gym for the assembly. Then 86 students left. How many students were still in the gym?

3. Look at your addition, subtraction, and proof drawings from Problems 1 and 2. How are addition and subtraction related?
Solve and Discuss

Solve. Label your answers.

4. Marly had 275 baseball cards. Her brother gave her a collection of 448 baseball cards. How many baseball cards does Marly have now?

5. Write a subtraction word problem related to the addition word problem in Problem 4. Then find the answer without doing any calculations.

6. Bill drove 375 miles on the first day of his cross-country trip. The next day he drove an additional 528 miles. How many miles did Bill drive on the first two days of his trip?

7. Write a subtraction problem related to the addition word problem in Problem 6. Then find the answer without doing any calculations.
A. Reasonable Answers

Use rounding to decide if the answer is reasonable. Write yes or no. Then find the answer to see if you were correct.

6. Nathan counted 28 large dogs and 37 small dogs at the dog park. He said he saw 55 dogs in all.

7. There are 122 third-and fourth-grade students at Cedar Creek Elementary School. There are 67 students in third grade and 55 students in fourth grade.

8. The pet supermarket sold 245 bags of dog food and 167 bags of cat food. The supermarket sold 312 bags of pet food in all.

9. The total distance from Charleston, West Virginia to Biloxi, Mississippi is 913 miles. Benjamin drove 455 miles from Charleston to Athens, Georgia. Then he drove 458 miles from Athens to Biloxi.

10. There were 432 people at the basketball game. 257 people sat on the home team side. 175 people sat on the visiting team side.

11. The Pecos River is 234 miles longer than the Yellowstone River. The Yellowstone River is 692 miles long. The Pecos River is 826 miles long.
3.0A Symmetry of the addition table

Task

Below is a table showing how to add numbers from 1 to 3:

<table>
<thead>
<tr>
<th>+</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Cut out the table and fold it over the dotted line. Notice that the blue squares match up and so do the orange squares. Notice that the squares that match up have the same numbers in them. We say that the squares that match up when you fold along the line are "mirror images" of each other.
The table below shows how to add numbers from 1 to 9. Two squares are shaded blue and two are green:

<table>
<thead>
<tr>
<th>+</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

a. Are the blue squares mirror images of each other? Explain why the numbers in the blue squares are equal.

b. Are the green squares mirror images of each other? Explain why the numbers in the green squares are equal.

c. Shade the rest of the mirror image squares with the same color. Why are the mirror
image numbers always equal?

IM Commentary

The goal of this task is to help students understand the commutative property of addition by examining the addition facts for single digit numbers. This is important as it gives students a chance, at a young age, to do more than memorize these arithmetic facts which they will use throughout their education. The approach taken here is a geometric one, associating the commutative property of addition with the symmetry of the addition table. Students don't "officially" study symmetry until 4th grade (see 4.G.3), so this task defines the particular symmetry for them.

Two additional interesting aspects of the table worth noting are:

- The first nine even numbers appear on the shaded diagonal. This comes from the fact, for example, that $4 + 4 = 2 \times 4$ and so gives students a chance to think about the meaning of multiplication. This is discussed for a smaller addition table in the task "Addition Patterns" but the teacher might also prompt the students to address this here.
- The symmetry of the table about the diagonal essentially cuts in half the number of facts which the students need to memorize if they think flexibly about addition of single digit numbers.

This task is mainly intended for instructional purposes. There will be ample opportunities to test whether or not the students have learned their single digit addition tables and the goal of this task is to facilitate the process by revealing patterns and structure in the table.

Solution

a. The two blue squares are mirror images of one another. One of them is two squares below the yellow 4 and the other is two squares to the right of the yellow 4: when the table is folded along the diagonal containing the yellow 4, the two blue squares match up.
The two blue squares contain the sums $5 + 2$ and $2 + 5$. These are both equal to seven. They are the same because the same two numbers are being added: only the order is different. The commutative property of addition says that the sum does not depend on the order of the two numbers.

b. The two green squares are mirror images of one another. One of them is four squares below the yellow 8 and the other is four squares to the right of the yellow 8; when the table is folded along the diagonal containing the yellow 8, the two green squares match up.

The two green squares contain the sums $8 + 4$ and $4 + 8$. These are both equal to twelve. They are the same because the same two numbers are being added: only the order is different. The commutative property of addition says that the sum does not depend on the order of the two numbers.

c. The table below has been shaded with mirror image squares being the same color. Squares next to the diagonal yellow squares are shaded orange, those two squares removed from the diagonal yellow squares are shaded red, and so on.
The reason why mirror image squares have the same numbers is the commutative property of addition: the sum of two numbers is the same regardless of the order in which they are added. For example, the lower green diagonal of squares has the sums $5 + 1, 6 + 2, 7 + 3, 8 + 4,$ and $9 + 5$ while the upper green diagonal has the same sums in reverse order: $1 + 5, 2 + 6, 3 + 7, 4 + 8,$ and $5 + 9.$ Since the order of the addends does not influence the sum, it is sufficient to know one of these diagonals and this then determines the other. So the commutative property of addition cuts the amount of facts that need to be memorized almost in half.
Recognize Perimeter and Area

On this page, the dots on the dot paper are 1 cm apart. Use the rectangle for Exercises 1–4.

1. What part of the rectangle is its **perimeter**?

2. What part of the rectangle is its **area**?

3. Find the perimeter. Draw tick marks to help.

4. Find the area. Draw **unit squares** to help.

5. Draw a rectangle 5 cm long and 3 cm wide on the dot paper. Find the perimeter and area.

6. Explain how you found the area of the rectangle in Exercise 5.

Perimeter ________

Area ________

VOCABULARY

perimeter
area
unit square
Find Perimeter and Area

Find the perimeter and area of each figure. Remember to include the correct units in your answers.

7. perimeter area

Perimeter =
Area =

8.

Perimeter =
Area =

9.

Perimeter =
Area =

10.

Perimeter =
Area =

11.

Perimeter =
Area =

12.

Perimeter =
Area =
Write Different Equations for Area

1. Use the drawings. Show two ways to find the area of a rectangle that is 10 units long and 6 units wide.

2. Write equations for your two rectangle drawings.

3. Suppose the rectangle is 10 feet long and 6 feet wide. What is its area?

4. Suppose the rectangle is 10 meters long and 6 meters wide. What is its area?

5. Use drawings and write equations to show two ways to find the area of a rectangle that is 9 yards long and 5 yards wide.
Rectangle Equations and Drawings

Write an equation for each rectangle.

6. \[\frac{3}{4} + \frac{5}{4} \]

7. \[\frac{2}{5} + \frac{4}{5} \]

8. \[\frac{3}{3} + \frac{6}{3} \]

9. \[\frac{4}{4} + \frac{4}{4} \]

Draw a rectangle for each equation.

10. \[(3 \times 3) + (3 \times 5) = 3 \times 8 \]

11. \[(4 \times 5) + (4 \times 3) = 4 \times 8 \]

12. \[(5 \times 3) + (5 \times 6) = 5 \times 9 \]

13. \[(4 \times 6) + (4 \times 4) = 4 \times 10 \]
Unit Fractions and Fraction Bars

You can represent a fraction with a fraction bar. The denominator tells how many equal parts the whole is divided into. The numerator tells how many equal parts you are talking about.

1 whole

\[\frac{1}{3} \]

Shade 1 part.

A unit fraction has a numerator of 1. Shade the rest of the fraction bars at the right below to represent unit fractions. What patterns do you see?

1 whole

Divide the whole into 2 equal parts.

\[\frac{1}{2} \]

Divide the whole into 3 equal parts.

\[\frac{1}{3} \]

Divide the whole into 4 equal parts.

\[\frac{1}{4} \]

Divide the whole into 5 equal parts.

\[\frac{1}{5} \]

Divide the whole into 6 equal parts.

\[\frac{1}{6} \]

Divide the whole into 7 equal parts.

\[\frac{1}{7} \]

Divide the whole into 8 equal parts.

\[\frac{1}{8} \]
Build Fractions from Unit Fractions

Write the unit fractions for each whole. Next, shade the correct number of parts. Then show each shaded fraction as a sum of unit fractions.

9. Divide the whole into 5 equal parts.

10. Divide the whole into 3 equal parts.

11. Divide the whole into 7 equal parts.

12. Divide the whole into 8 equal parts.

13. Divide the whole into 6 equal parts.

14. Divide the whole into 8 equal parts.
Use Fraction Bars

Shade each fraction bar to show the fraction. First, divide the fraction bar into the correct unit fractions.

1. \(\frac{1}{6} \)
 \[\text{1 whole} \]

2. \(\frac{2}{3} \)
 \[\text{1 whole} \]

3. \(\frac{7}{8} \)
 \[\text{1 whole} \]

4. \(\frac{2}{4} \)
 \[\text{1 whole} \]

5. \(\frac{5}{6} \)
 \[\text{1 whole} \]

6. \(\frac{3}{8} \)
 \[\text{1 whole} \]
Use Number Lines

Mark each number line to show the fraction. First, divide the number line into the correct unit fractions.

7. $\frac{1}{6}$

8. $\frac{2}{3}$

9. $\frac{7}{8}$

10. $\frac{2}{4}$

11. $\frac{5}{6}$

12. $\frac{3}{8}$
Locate Fractions Less Than 1

Locate each fraction on the number line. Draw more number lines if you need to.

1. \(\frac{1}{4} \)

2. \(\frac{1}{8} \)

3. \(\frac{2}{3} \)

4. \(\frac{5}{6} \)

5. \(\frac{1}{6} \) and \(\frac{2}{3} \)

6. \(\frac{1}{3} \) and \(\frac{5}{8} \)

7. \(\frac{1}{6} \) and \(\frac{3}{4} \)
Locate Fractions Greater Than 1

Locate each fraction on the number line.

8. \(\frac{5}{4} \)

9. \(\frac{8}{3} \)

10. \(\frac{5}{1} \)

11. \(\frac{8}{6} \)

12. \(\frac{6}{2} \)

13. Explain how you located the fraction for one of the Exercises from 8–12.
Find 1

Locate 1 on each number line.

14.

15.

16.

17.

18.

19. Explain how you located 1 for Exercise 17.

Fraction Circles

Label each unit fraction. Then cut out the fraction circles on the dashed lines.
Compare Fractions

Use these two circles as wholes.

Work with a partner. Use your fraction circles to compare fractions during the class activity.

Record your work during the class activity.

1. $\frac{7}{8} \bigcirc \frac{5}{8}$
2. $\frac{3}{6} \bigcirc \frac{5}{6}$

3. Explain how to compare two fractions that have the same denominator.

4. $\frac{3}{4} \bigcirc \frac{3}{8}$
5. $\frac{5}{8} \bigcirc \frac{5}{6}$

6. Explain how to compare two fractions that have the same numerator.
Use Symbols to Compare Fractions

Compare. Use <, >, or =.

7. $\frac{2}{2} \bigcirc \frac{2}{3}$
8. $\frac{1}{3} \bigcirc \frac{5}{3}$
9. $\frac{3}{2} \bigcirc \frac{3}{6}$
10. $\frac{5}{6} \bigcirc \frac{4}{6}$

11. $\frac{4}{6} \bigcirc \frac{5}{6}$
12. $\frac{3}{4} \bigcirc \frac{3}{8}$
13. $\frac{6}{3} \bigcirc \frac{5}{3}$
14. $\frac{8}{4} \bigcirc \frac{8}{7}$

15. $\frac{5}{6} \bigcirc \frac{5}{3}$
16. $\frac{8}{5} \bigcirc \frac{12}{5}$
17. $\frac{6}{5} \bigcirc \frac{6}{4}$
18. $\frac{2}{2} \bigcirc \frac{4}{4}$

19. $\frac{5}{8} \bigcirc \frac{3}{8}$
20. $\frac{7}{3} \bigcirc \frac{7}{6}$
21. $\frac{7}{8} \bigcirc \frac{3}{8}$
22. $\frac{9}{4} \bigcirc \frac{9}{8}$

23. $\frac{4}{4} \bigcirc \frac{6}{6}$
24. $\frac{12}{7} \bigcirc \frac{11}{7}$
25. $\frac{8}{6} \bigcirc \frac{8}{2}$
26. $\frac{8}{1} \bigcirc \frac{12}{1}$

What’s the Error?

Dear Math Students,

Today my teacher asked me to compare $\frac{3}{7}$ and $\frac{3}{9}$ and to explain my thinking.

I wrote $\frac{3}{7} = \frac{3}{9}$. My thinking is that both fractions have 3 unit fractions so they must be equal.

Is my work correct? If not, please correct my work and tell me what I did wrong. How do you know my answer is wrong?

Your friend,
Puzzled Penguin

27. Write an answer to Puzzled Penguin.
Make Fraction Strips
Halves, Fourths, and Eighths

Two fractions are equivalent fractions if they name the same part of a whole.

Use your halves, fourths, and eighths strips to complete Exercises 1-4.

1. If you compare your halves strip and your fourths strip, you can see that 2 fourths are the same as 1 half.

Complete these two equations:

\[\square \text{fourths} = 1 \text{ half} \]
\[\frac{1}{4} = \frac{1}{2} \]

2. How many eighths are in one half? ___________

Complete these two equations:

\[\square \text{eighths} = 1 \text{ half} \]
\[\frac{1}{8} = \frac{1}{2} \]

3. What are two fractions that are equivalent to \(\frac{1}{2} \)?

4. How many eighths are in one fourth? ___________

Complete these two equations:

\[\square \text{eighths} = 1 \text{ fourth} \]
\[\frac{1}{8} = \frac{1}{4} \]
Thirds and Sixths

Use your thirds and sixths strips to answer Exercises 5–6.

5. How many sixths are in one third? __________

Complete these two equations:

__________ sixths = 1 third
\[
\frac{\square}{6} = \frac{1}{3}
\]

6. How many sixths are in two thirds? __________

Complete these two equations:

__________ sixths = 2 thirds
\[
\frac{\square}{6} = \frac{2}{3}
\]

What's the Error?

Dear Math Students,

Today my teacher asked me to name a fraction that is equivalent to \(\frac{1}{2}\).

I wrote \(\frac{2}{6} = \frac{1}{2}\).

Is my answer correct? If not, please correct my work and tell me what I did wrong.

Your Friend,

Puzzled Penguin

7. Write an answer to Puzzled Penguin.

- Equivalent Fractions on Number Lines

1. Complete each number line. Show all fractions including each fraction for 1.

- **halves**

- **thirds**

- **fourths**

- **sixths**

- **eighths**

2. Write an equivalence chain with fractions that equal \(\frac{2}{2} \).

3. Why are the fractions in the equivalence chain for \(\frac{2}{2} \) equal?

4. Why does the length of unit fractions get smaller as their denominators get larger?
Equivalence Chains

Use your number lines from page 365 to write an equivalence chain.

5. With fractions that equal \(\frac{1}{2} \)

6. With fractions that equal \(\frac{1}{3} \)

7. With fractions that equal \(\frac{2}{3} \)

8. With fractions that equal \(\frac{1}{4} \)

9. With fractions that equal \(\frac{3}{4} \)

10. With fractions that equal \(\frac{8}{8} \)

Solve. Use what you have learned about equivalent fractions and about comparing fractions.

11. Jaime has \(\frac{1}{2} \) dozen red marbles and \(\frac{4}{8} \) dozen green marbles. Does he have more red or green marbles?

12. Nancy buys \(\frac{3}{6} \) pound of walnuts. Sandra buys \(\frac{3}{4} \) pound of almonds. Who buys more nuts?

13. Chin and Maya collected shells at the beach. They both used the same kind of basket. Chin collected \(\frac{3}{4} \) basket and Maya collected \(\frac{3}{3} \) basket. Who collected more shells?
Numbers to 200

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
<td>156</td>
<td>157</td>
<td>158</td>
<td>159</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>162</td>
<td>163</td>
<td>164</td>
<td>165</td>
<td>166</td>
<td>167</td>
<td>168</td>
<td>169</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>172</td>
<td>173</td>
<td>174</td>
<td>175</td>
<td>176</td>
<td>177</td>
<td>178</td>
<td>179</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>182</td>
<td>183</td>
<td>184</td>
<td>185</td>
<td>186</td>
<td>187</td>
<td>188</td>
<td>189</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>192</td>
<td>193</td>
<td>194</td>
<td>195</td>
<td>196</td>
<td>197</td>
<td>198</td>
<td>199</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Reading Fluency | 1. Day 1: Cold Read: Set a timer for 1 minute, ask the student to read for one minute and mark the text where they stop. After they have marked where they stopped, read the passage aloud to the student.
2. Day 2: Choral Read: Have the student and another person read the passage together.
3. Day 3: Practice: Set the timer for 1 minute and ask the student to read the passage for marking where they stop.
4. Day 4: Practice: Repeat the steps for Day 3.
5. Day 5: Hot Read: Set the timer for 1 minute, ask the student to read for one minute and mark the text where they stopped. After multiple days of practice, the student should see that they can read farther and with less errors. |
| Reading Comprehension| 1. Ask the student to read the text and use a writing tool to code the text using the symbols below.
 - ! - surprising facts
 - ? - questions they had about the event
 - * - important information
 - L - information that tells the location of the event
 - P - information that describes the place of the event
2. Ask students to share with you what they coded and why.
3. Ask students to reread the text.
4. Read aloud the questions to the students. Ask students to use what they read to answer the multiple choice questions. |
| Writing | After reading the text, use the steps below to answer the short answer questions.
K-5
 a. R: Restate the question
 b. A: Answer all parts of the questions
 c. C: Cite evidence from the text to support your answer.
 d. E: Explain how the evidence from the text supports your answer
6-12
 a. Claim
 b. Support
 c. Evidence
 d. Tie-in |
| Math Calculation | Encourage students to use the following to solve math problems:
| | • Number lines
| | • 100 charts
| | • 200 charts
| | • Multiplication charts
| | • Formula sheets
| | Choose the tool that students are most comfortable with and apply to their problems. |
| Math Problem Solving | 1. Read word problems to the student.
| | 2. Ask the student to highlight or underline the important information in the problem that is needed to solve the problem.
| | 3. Write a number sentence or equation to solve the problem.
| | 4. Use the math tool necessary to solve the problem.
| | • Number lines
| | • 100 charts
| | • 200 charts
| | • Multiplication charts
<p>| | • Formula sheets |</p>
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
</tr>
</tbody>
</table>